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SUMMARY

Multiphase �ow through porous media is a highly nonlinear process that can be solved numerically with
the aid of �nite elements (FE) in space and �nite di�erences (FD) in time. For an accurate solution much
re�ned FE grids are generally required with the major computational e�ort consisting of the resolution
to the nonlinearity frequently obtained with the classical Picard linearization approach. The e�ciency
of the repeated solution to the linear systems within each individual time step represents the key to
improve the performance of a multiphase �ow simulator. The present paper discusses the performance
of the projection solvers (GMRES with restart, TFQMR, and BiCGSTAB) for two global schemes based
on a di�erent nodal ordering of the unknowns (ORD1 and ORD2) and a scheme (SPLIT) based on the
straightforward inversion of the lumped mass matrix which allows for the preliminary elimination and
substitution of the unknown saturations. It is shown that SPLIT is between two and three time faster
than ORD1 and ORD2, irrespective of the solver used. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Immiscible two-phase �ow in porous media in isothermal conditions is described by the mass
conservation equation of each phase [1, 2]:

@(���S�)
@t

= − ∇ · [��v�] + q�; �=w; n (1)
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1330 A. COMERLATI, G. PINI AND G. GAMBOLATI

where subscript � refers to wetting (w) and non-wetting (n) phase, respectively (e.g. water
and oil or water and gas). S� is the saturation, �� the density, v� the Darcy velocity, q� the
mass source=sink rate of the phase �, and � denotes the porous medium porosity. The velocity
of each phase � is given by the extended Darcy law:

v�= − ��k(∇p� − ��g) (2)

where the mobility �� is de�ned as the ratio between the relative permeability kr� and the
dynamic viscosity �� of the phase �, k is the medium intrinsic permeability tensor, p� the
�-phase pressure, and g the gravity acceleration vector. Substituting Equation (2) into the con-
tinuity equations (1) yields:

@(���S�)
@t

=∇ · [����k(∇p� − ��g)] + q� (3)

The solution of the PDEs system (3) requires the following auxiliary relationships:

Sw + Sn = 1; pc(Sw)=pn − pw (4)

where Sw and Sn are wetting and non-wetting saturations and pc the capillary pressure de�ned
as the di�erence between the non-wetting and wetting-phase pressure. Capillary properties
can be described using a number of constitutive laws, such as for instance the Brooks–Corey
capillary model [3]:

krw(Sw)= S(2+3�)=�we ; krn(Sw)= (1− Swe)2(1− S(2+�)=�
we ); pc(Sw)=pdS−1=�

we

where pd is the pore entry pressure representing the lowest capillary pressure needed to
displace the wetting phase by the non-wetting phase in a fully saturated medium, � the so-
called sorting factor or pore distribution index which is related to the medium pore size
distribution. The sorting factor usually ranges between 0.2 (denoting a wide range of pore
sizes) and 7 (for very uniform materials), Swe = (Sw − Swr)=(1 − Swr) is the e�ective water
saturation, with Swr the irreducible water saturation.
Using the auxiliary relationships (4), PDEs (3) can be rewritten in terms of water pressure

(pw) and water saturation (Sw) yielding the coupled pressure–saturation formulation:

@(��wSw)
@t

=∇ · [�w�wk(∇pw − �wg)] + qw
(5)

@(��n(1− Sw))
@t

=∇ · [�n�nk(∇pw +∇pc − �ng)] + qn

Equations (5) represent a highly nonlinear system of PDEs, where capillary pressure and
relative permeability depend on saturation:

krw = krw(Sw); krn = krn(Sw); pc =pc(Sw)

while �uid density and viscosity may depend on the corresponding phase pressure:

�w =�w(pw); �n =�n(pn); �w =�w(pw); �n =�n(pn)

As an example, the capillary pressure and relative permeability are provided in Figure 1 for
the two-phase trichloroethylene (TCE)–groundwater system in a coarse sand.
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Figure 1. Brooks–Corey capillary pressure (a) and relative permeability (b) curves for a
coarse sand, characterized by a sorting factor and an entry pressure �=2:7 and pd = 755Pa,

respectively. Irreducible water saturation is Swr = 0:09.

2. TWO-PHASE FLOW FINITE ELEMENT EQUATIONS

Equations (3) are discretized in space using linear tetrahedra FE in 3D yielding a system of
�rst-order di�erential equations that read (see Appendix A):

[
Hw 0

Hn 0

] [
pw

Sw

]
+

[
0 Mw

0 Mn

] [
ṗw

Ṡw

]
+

[
qw

qn

]
=0 (6)

where Hw, Hn, Mw, and Mn are the wetting and non-wetting sti�ness and mass matrices;
[qw; qn]T incorporates source=sinks terms, gravity terms, and Neumann boundary conditions;
[pw;Sw]T and [ṗw; Ṡw]

T are the vectors of the unknown nodal water pressure (pw) and satu-
ration (Sw), and the corresponding time derivatives. Mass matrices Mw and Mn are lumped
for stability reasons [4], while in the sti�ness matrices Hw and Hn hydraulic mobility is eval-
uated ‘fully upwind’ [1, 2, 5–7] to ensure convergence of the nonlinear scheme to the correct
physical solution and to avoid undesirable oscillations when capillary forces become small.
Sti�ness matrices Hw and Hn are symmetric positive de�nite and symmetric positive semi-
de�nite, respectively. Mass matrices Mw and Mn are diagonal matrices. System (6) can be
written in a more compact form as

Hx+M ẋ+ q=0 (7)

where the meaning of the new symbols can be easily derived by comparison of Equations (6)
and (7). The time integration is implemented via Euler backward FD, giving the following
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nonlinear system of algebraic equations:[
H +

M
�t

]
(k+1)

x(k+1) =
[
M
�t

]
(k+1)

x(k) − q(k+1) (8)

where �t is the time step size; (k) and (k + 1) indicate the previous and the current time
level, respectively. The nonlinear system (8) is solved by Newton-like iterative methods. To
this aim Equation (8) is rewritten as

f(x(k+1))=Ax(k+1) − �q=0

with

A=
[
H +

M
�t

]
(k+1)

; �q=
[
M
�t

]
(k+1)

x(k) − q(k+1)

Let x=x(k+1), expanding f(x) in Taylor’s series and denoting with (r) the nonlinear iteration
counter, we obtain:

f(x(r+1))=f(x(r)) + f′(x(r))(x(r+1) − x(r)) + · · · =0
setting the current search direction �x(r+1) =x(r+1) − x(r) and the derivative term J (x(r))=
f′(x(r)), the Newton iteration reads:

J (x(r))�x(r+1) = − f(x(r)); x(r+1) =x(r) + �x(r+1) (9)

where the Jacobian matrix is given by J =A + A′x − �q′, the superscript indicates vector
di�erentiation. When the Jacobian is approximated by neglecting A′ and �q′, the Picard scheme
is obtained. In this case the linear system that must be solved at each nonlinear iteration can
be written as

A(x(r))�x(r+1) = − A(x(r))x(r) + �q(x(r)) (10)

with the search direction given by �x(r+1) = [�p(r+1)w ; �S (r+1)w ]T. Nonlinear convergence is con-
sidered achieved when the norm of each correction component satis�es the following test:

|�p(r+1)w | ¡ �prs and |�S (r+1)w | ¡ �sat (11)

where �prs and �sat are the nonlinear tolerances for water pressure and water saturation, re-
spectively; | · | can either be the L2 or the L∞ norm. The nonlinear convergence properties of
the Picard and Newton schemes are discussed in a number of References [8, 9]. In general
one can say that the Picard scheme exhibits a good initial convergence properties, especially
in combination with a relaxation technique. However, it often su�ers from slow convergence
or stagnation at relatively low residual levels. This stagnation can be related to the absence
of the derivative terms in the Jacobian matrix. The behaviour of the Newton approach, on the
other hand, is locally optimal, achieving quadratic convergence error at low residual levels.
However, nonconvergence or even divergence may be observed at the initial stage of the
iteration if the initial guess is not close enough to the �nal solution. Techniques to alleviate
this problem include, for instance, relaxation or line search methods. These techniques may
be used with both the Picard and the Newton approach in order to reduce the size of the
step taken along the search direction �x, leading to the update x(r+1) =x(r) + !�x(r+1). The
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parameter !∈ ]0; 1] is called the relaxation or line-search parameter. The quality of the initial
guess is crucial to obtain a fast nonlinear convergence and is in�uenced by the time step
size. For this reason the value of �t is empirically adapted on the basis of the convergence
history at the previous time step, using the algorithm described below [10, 11]. The current
�t value is increased by a factor �tmag (up to a maximum �tmax) if convergence at the
previous iteration is achieved in fewer than m1 iterations, it is left unchanged if convergence
requires between m1 and m2 iterations, and it is decreased by a factor �tred (down to a min-
imum �tmin) if convergence requires more than m2 iterations. If convergence is not achieved
(maximum number of iterations m exceeded), the iterative process is repeated (back step-
ping) using a reduced time step size (reduction factor �tred, down to �tmin). The �t values
and the maximum number of nonlinear iterations m, m1, and m2 are found empirically. In
the present paper the Picard linearization procedure is used (see Equation (10)) on account
of its simplicity ease of implementation and satisfactory computational performance experi-
mented by various authors (e.g. References [12, 13]). The nonsymmetric system controlling
the computational performance of the algorithm is given by

A(r)�x(r+1) = b(r) (12)

where matrix A and the right-hand side vector b can be written as

A(r) =

[
Hw Mw=�t

Hn Mn=�t

](r)
; b(r) =−

[
Hw Mw=�t

Hn Mn=�t

](r) [pw
Sw

](r)
+

[
�qw

�qn

](r)

3. NUMERICAL RESULTS

Two di�erent orderings (ORD1 and ORD2) and a partitioned solver (SPLIT) are tested for
e�ciency with a 3D example modi�ed after Huber and Helmig [7]. In a homogeneous sandy
sample 0:9×0:9m large and 0:65m high, initially saturated with water, a TCE in�ltration takes
place over a 0:1×0:1m area located at the centre of the upper surface where a permanent TCE
saturation of 0.25 is maintained for 300 s. The remaining part of the upper and the bottom
boundaries are impermeable, whereas along the lateral sides hydrostatic water pressure is
assumed. For symmetry reasons only a quarter of the sandy sample is discretized with a
FE mesh consisting of 72 557 nodes and 404 352 tetrahedra (see Figure 2). Soil and �uid
properties are summarized in Table I, and nonlinear and back-stepping parameters shown in
Table II. All the numerical simulations are performed on a 32-bit PC-workstation equipped
with a 1526MHz AMD processor, 2000 Mbyte of core memory, and 256 kbyte of secondary
cache. Only the comparison between iterative and direct solver has been performed also on a
64-bit Compaq workstation equipped with a 833MHz Aplha EV6.8AL processor, 4500 Mbyte
of core memory, and 8 Mbyte of secondary cache.

3.1. Solution by projection solvers

Projection (or conjugate gradient-like) methods essentially project the FE system onto sub-
spaces (called Krylov subspaces) of increasing dimension ‘ and solve the projected system.
The solution in the Krylov subspace is basically obtained by a minimal residual (MR) and an
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1334 A. COMERLATI, G. PINI AND G. GAMBOLATI

Figure 2. 3D mesh of a quarter of the core sample consisting of 72 557 nodes and 404 352 tetrahedra.

Table I. Soil and �uid properties.

Property Symbol Value

Intrinsic permeability (m2) k 6:64× 10−11

Porosity (dimensionless) � 0.40
Irreducible water saturation (dimensionless) Swr 0.09
Sorting factor (dimensionless) � 2.7
Pore entry pressure (Pa) pd 755
Water density (kg=m3) �w 1000
TCE density (kg=m3) �n 1462
Water viscosity (Pa s) �w 0.001
TCE viscosity (Pa s) �n 0.00057

orthogonal residual (OR) procedure. The fundamental di�erence between MR and OR is that
while with a MR method the existence of a solution is always theoretically guaranteed, the
same does not necessarily hold with an OR method which might even diverge. The most at-
tractive projection schemes for sparse nonsymmetric inde�nite equations include the MR-based
Generalized Minimum RESidual (GMRES) method algorithm [14], and the OR-based BiCon-
jugate Gradient STABilized (BiCGSTAB) [15] and Transpose-Free Quasi-Minimal Residual
(TFQMR) [16] methods. To be of a practical interest, iterative methods must be precon-
ditioned. This implies transforming the original system into another system with the same
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Table II. Tolerances and back-stepping parameters.

Parameter Symbol Value

Maximum # of nonlinear iterations (dimensionless) m 8
Maximum # of nonlinear iterations (dimensionless) m1 6
Maximum # of nonlinear iterations (dimensionless) m2 8
Magni�cation factor (dimensionless) �tmag 1.2
Reduction factor (dimensionless) �tred 0.5
Maximum allowed time step (s) �tmax 10
Minimum allowed time step (s) �tmin 0.5
Simulated time (s) tmax 300
Linear tolerance (dimensionless) 	l 10−5

Nonlinear pressure tolerance (Pa) �prs 10−2

Nonlinear saturation tolerance (dimensionless) �sat 10−4

solution, but more cost-e�ective to solve. However, the construction of a preconditioner is
not inexpensive. A good preconditioner realizes a most e�cient trade-o� between the opposite
needs for reducing the preconditioner cost on the one hand, and accelerating the convergence
of the preconditioned system on the other. An extensive review of the projection methods can
be found in Reference [17].
On serial computers the most widely used preconditioner relies on the partial LU factor-

ization of matrix A. For problems arising form the numerical integration of the subsurface
�ow equation the incomplete factorization with no �ll-in ILU(0) [18, 19] turns out to work
pretty well. Since its computation is cheap the preconditioner is updated and re-calculated
within each nonlinear iteration. However, better results can be obtained with the incomplete
factorization ILUT(�; �) with variable �ll-in connection with a suitable threshold strategy for
dropping the small elements [20]. In the notation above, � represents the degree of �ll-in and
� the threshold tolerance. The choice of the optimal � and � values has to be made empirically
for any speci�c problem. The e�ciency of a given preconditioning technique in the above
class is also related to the matrix bandwidth. In the present paper two di�erent orderings are
addressed, namely ORD1 and ORD2. The former is given by

�x=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�pw;1

...

�pw; N

�Sw;1

...

�Sw; N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ORD1 leads to a four block partitioned nonsymmetric matrix with a large bandwidth as is
shown in Figure 3. The block corresponding to the non-wetting Kn sti�ness matrix has non-
zero coe�cients only in correspondence to those nodal connections where the water saturation
degree Sw �=1, and hence the relative permeability krn �=0.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1329–1346
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Hw

Mn /∆t
Hn

Figure 3. Structure of the system matrix arising from the unknowns ordering
ORD1 after 300 s of TCE in�ltration.

The second ordering, ORD2, interlaces pressure and saturation components as follows:

�x=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�pw;1

�Sw;1

...

�pw; N

�Sw; N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ORD2 yields again a nonsymmetric matrix with a more reduced bandwidth (Figure 4) with the
quality of the preconditioner expectedly improved and the convergence of the preconditioned
projection schemes accelerated.
Convergence of the projection solver is considered achieved whenever the relative residual

r(r;m)r meets the test below:

r(r;m)r =
|b− A�x(r+1; m)|

|b| ¡ 	l (13)

where | · | is the L2 norm, (m) the iteration counter, and 	l the preset exit tolerance.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1329–1346
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Figure 4. Structure of the system matrix arising from the unknowns ordering
ORD2 after 300 s of TCE in�ltration.

3.2. Solution by partitioned solver (SPLIT)

As was previously outlined mass matrices Mw and Mn are lumped diagonal and their inversion
is computationally inexpensive [21]. Hence a new solution approach may be developed. To
this aim set:

A1 =Hw;

b1 = qw;

A2 =Hn;

b2 = qn;

D1 =Mw=�t;

x1 = �pw;

D2 =Mn=�t

x2 = �Sw

System (12) can be re-written as

A1x1 +D1x2 = b1 (14)

A2x1 +D2x2 = b2 (15)

from Equation (15) x2 is obtained as

x2 =D−1
2 (b2 − A2x1) (16)

and substituted into Equation (14) to provide the half-reduced nonsymmetric linear system:

(A1 − D1D−1
2 A2)x1 = b1 − D1D−1

2 b2 (17)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1329–1346
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Figure 5. Structure of the system matrix arising from the SPLIT approach after 300s of TCE in�ltration.

The structure of the matrix in Equation (17) is shown in Figure 5. The linear system is
again solved by preconditioned projection methods and x2 �nally calculated by replacing x1
in Equation (16).
When the wetting, non-wetting phases, and porous matrix are assumed to be incompressible,

the product D1D−1
2 A2 becomes:

D1D−1
2 A2 =

�w
�n

A2

System (17) can be e�ciently solved with the symmetric preconditioned conjugate gradient
with the incomplete Cholesky matrix factorization. By this approach much computer memory
can be saved as only the upper triangular part of the system matrix given by A1 − �w=�nA2
must be stored in core.

3.3. Comparison between projection solvers

ORD1, ORD2, and SPLIT are discussed in connection with di�erent projection methods.
ILU(0) preconditioned GMRES, TFQMR, and BiCGSTAB schemes have been selected, with
(LU )−1b as the initial guess (with L and U the incomplete Crout factors).
The GMRES has been tested using k=10; 20; 40; 60 as restart values. The best timing is

obtained with k=20 which appears to represent the rightest compromise between numerical
e�ciency and core memory occupation (see Table III). Switching from ORD1 to ORD2 the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1329–1346



PROJECTION AND PARTITIONED SOLUTION FOR TWO-PHASE FLOW PROBLEMS 1339

Table III. Timing results after 300 s of TCE in�ltration, using ILU(0)
preconditioned GMRES(20).

ORD1 ORD2 ∗SPLIT

Total linear system solution time (s) 8947 7327 3108
Total simulation time (s) 9495 7844 3616
Total # of time steps 67 67 67
Total # of back stepping 24 24 24
Total # of nonlinear iterations 530 530 530
Total # of linear iterations 23 045 18 781 23 848
Avg. linear iterations per time step 344 280 356
Avg. linear iterations per nonlinear iteration 43 35 45

∗N × N linear system.

Table IV. Timing results after 300 s of TCE in�ltration, using ILU(0)
preconditioned TFQMR.

ORD1 ORD2 ∗SPLIT

Total linear system solution time (s) 12 955 10 867 3863
Total simulation time (s) 13 512 11 382 4358
Total # of time steps 67 67 67
Total # of back stepping 24 24 24
Total # of nonlinear iterations 530 530 530
Total # of linear iterations 39 581 32 295 38 830
Avg. linear iterations per time step 591 482 579
Avg. linear iterations per nonlinear iteration 74 61 73

∗N × N linear system.

computational cost is reduced by a factor 1.2. However, a more signi�cant improvement is
achieved with SPLIT which reduces the computational cost relative to ORD1 by a factor 2.6.
The TFQMR timing is given in Table IV, convergence being almost the same as GMRES.

ORD1 and ORD2 provide a similar outcome, while a better performance is obtained with
SPLIT whose computational cost relative to ORD1 is reduced by a factor 3.1. However,
overall TFQMR requires a larger computational cost than GMRES with the most convenient
restart value. For example TFQMR-SPLIT requires a total computational cost of 4358 s,
resulting almost 20% slower than GMRES(20)-SPLIT.
Timing from BiCGSTAB is �nally provided in Table V. Observe in Table V that the overall

performance of the preconditioned BiCGSTAB is superior to both GMRES and TFQMR, for
example relative to GMRES(20)-SPLIT, the total simulation time of BiCGSTAB-SPLIT is
reduced from 3616 to 3143 s. BiCGSTAB appears to be quite robust and does not require the
use of any problem dependent parameter.

3.4. Comparison with a direct solver

BiCGSTAB-SPLIT is compared for e�ciency also with a direct solver. We employed a direct
solver based on a sparse multifrontal variation of the Gauss elimination method as it is

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1329–1346



1340 A. COMERLATI, G. PINI AND G. GAMBOLATI

Table V. Timing results after 300 s of TCE in�ltration, using ILU(0)
preconditioned BiCGSTAB.

ORD1 ORD2 ∗SPLIT

Total linear system solution time (s) 8543 7151 2653
Total simulation time (s) 9100 7664 3143
Total # of time steps 67 67 67
Total # of back stepping 24 24 24
Total # of nonlinear iterations 530 530 530
Total # of linear iterations 13 952 11 487 14 531
Avg. linear iterations per time step 208 171 216
Avg. linear iterations per nonlinear iteration 26 22 27

∗N × N linear system.

Table VI. Timing results after 300 s of TCE in�ltration.

BiCGSTAB-SPLIT MA41-SPLIT

Total linear system solution time (s) 2140 108 339
Time per nonlinear iteration (s) 3.97 201
Total # of time steps 66 66
Total # of back stepping 25 25
Total # of nonlinear iterations 539 539
Total # of linear iterations 14 694 —
Avg. linear iterations per time step 223 —
Avg. linear iterations per nonlinear iteration 27 —

Simulations performed on a 64-bit Compaq workstation equipped with a 833 MHz
EV6.8AL processor, 4500 Mbyte of core memory, and 8 Mbyte of secondary cache.
∗N × N linear system.

implemented in the MA41 routine of the Harwell Software library (HSL) [22]. The comparison
is performed using two di�erent computers:

1. A 32-bit PC-workstation equipped with a 1526 MHz AMD processor, 2000 Mbyte of
core memory, and 256 kbyte of secondary cache.

2. A 64-bit Compaq workstation equipped with a 833MHz Alpha EV6.8AL processor, 4500
Mbyte of core memory, and 8 Mbyte of secondary cache.

This is done in order to investigate the sensitivity of the linear solver to the computer ar-
chitecture. Achieved timing on the Compaq machine is shown in Table VI with the direct
solver MA41-SPLIT that turns out to be almost 50 times slower than the iterative method
BiCGSTAB-SPLIT. Even worse results are obtained with the 32-bit PC-workstation where
MA41-SPLIT appears to be almost 420 times slower than BiCGSTAB-SPLIT. This is due
to the di�erent cache dimension which apparently has a great in�uence on the access to the
data stored within the core memory. Switching from BiCGSTAB-SPLIT to MA41-SPLIT the
memory requirement is increased from 160 to 1200 Mbyte, thus precluding the use of more
re�ned computational grids.
One last point bears mention. Inequality (13), when recasted using the notation of the

Newton scheme can be written as

|J (x(r))�x(r+1) + f(x(r))|6 	l|f(x(r))|

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1329–1346
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But at the initial stage of the linearization procedure (see Equation (9)) the nonlinear
residual |f(x(r))| is usually relatively large and the search direction �x(r+1) does not need
to be very accurate. In this case a very accurate solution to the linear system (12) is not
actually worth computing. Using a projection solver it is possible to adapt dynamically the
exit tolerance 	l without delaying the local convergence of the linearization procedure by
using an inexact Newton approach [23]. Suitable choices of 	l have been suggested by many
authors [23–25]. Of course this would not be possible with a direct solver.

3.5. Other strategies for the preconditioner implementation

Being the linear system solution required several times within each nonlinear iteration, rather
than recalculating the preconditioner any time a more e�cient procedure might be to calculate
a higher quality preconditioner only once at the �rst nonlinear iteration within each time step
and keep it untouched during the successive iterations. This opportunity is experimented with
using BiCGSTAB-SPLIT preconditioned with ILUT(�,�). The threshold tolerance � and the
optimal �ll-in value � are selected empirically (Table VII).
The timing from BiCGSTAB-SPLIT and ILUT(�; �) is summarized in Table VIII where

the �ll-in in�uence is also shown. Interestingly observe that the best outcome is obtained
with the smallest degree of �ll-in �=5. This appears to be the most appropriate trade-o�

Table VII. Timing results after 300 s of TCE in�ltration.

BiCGSTAB-SPLIT MA41-SPLIT

Total linear system solution time (s) 2653 1 133 140
Time per nonlinear iteration (s) 5.01 2138
Total # of time steps 67 67
Total # of back stepping 24 24
Total # of nonlinear iterations 530 530
Total # of linear iterations 14 531 —
Avg. linear iterations per time step 216 —
Avg. linear iterations per nonlinear iteration 27 —

Simulations performed on a 32-bit PC-workstation equipped with a 1526 MHz AMD
processor, 2000 Mbyte of core memory, and 256 kbyte of secondary cache.
∗N × N linear system.

Table VIII. Timing results after 300 s of TCE in�ltration obtained with SPLIT and the linear solution
performed with ILUT(�; �) preconditioned BiCGSTAB with di�erent �ll-in values.

ILUT (7; 10−5) ILUT (6; 10−5) ILUT (5; 10−5)

Total linear system solution time (s) 2252 2204 2341
Total simulation time (s) 2764 2697 2840
Total # of time steps 67 67 67
Total # of back stepping 24 24 24
Total # of nonlinear iterations 530 530 530
Total # of linear iterations 11 826 13 115 15 267
Avg. linear iterations per time step 176 196 227
Avg. linear iterations per nonlinear iteration 22 25 28
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between the preconditioner quality and the computational e�ort required by its calculation.
With �=5 the computational cost relative to BiCGSTAB-ORD1 preconditioned with ILU(0)
is reduced from 3143 to 2840 s (almost 10% faster). On balance the repeated calculation of
the incomplete factor with ILU(0) appears to be substantially equivalent to the use of the
better factor obtained with ILUT(�; �) and computed only once at each nonlinear iteration.

4. CONCLUSIONS

The PDEs governing two phase �ow through 3D porous media are integrated by the use of
tetrahedral FE in space and Euler-backward FD in time. The resulting numerical equations
are highly nonlinear. Nonlinearity is addressed via an iterative Picard-like solution scheme.
Within each simple linearized iteration projection CG-like solvers such GMRES, TFQMR,
and BiCGSTAB are used. Solver convergence is accelerated by preconditioning based on the
incomplete factorization of the coe�cient matrix with either partial or zero �ll-in. The pro-
jection solvers are implemented with two nodal ordering ORD1 and ORD2 and a partitioned
approach (SPLIT) wherein the unknown saturations are �rst eliminated and substituted into
the pressure equations. The most e�cient algorithm (BiCGSTAB-SPLIT) is compared with
the direct solver (MA41-SPLIT) of the HSL. The main results are summarized below:

1. Ordering ORD2 yields a slightly better results than ordering ORD1 due to its smaller
bandwidth which leads to a better preconditioner.

2. SPLIT turns out to be more cost e�ective than both ORD1 and ORD2 by a factor of
almost 3. Moreover the core memory requirement is also markedly less.

3. BiCGSTAB is on balance superior to both TFQMR and GMRES(k) while not requiring
the assessment of any empirical parameter.

4. Preconditioner ILU(0) appears to be quite appropriate. Although ILU(�; �) may improve
convergence, the resulting bene�t is o�set by the additional computational cost needed
for its calculation.

5. The direct solver MA41-SPLIT is orders of magnitude more time-consuming than any
of the iterative solvers experimented with in the present analysis.

APPENDIX A: SPATIAL DISCRETIZATION

PDEs (5) are discretized in space using linear tetrahedral FE and the Galerkin formulation.
The FE solution to the coupled system and pc are written as

pw ≈ p̂w =
N∑
l=1

p̂w; l(t)Wl(x)

Sw ≈ Ŝw =
N∑
l=1

Ŝw; l(t)Wl(x) (A1)

pc ≈ p̂c =
N∑
l=1

p̂c; l(t)Wl(x)
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where N is the number of FE nodes, Wl the basis (or coordinate) function associate to node
l, and p̂w; l and Ŝw; l the components of the nodal solution vectors pw and Sw, respectively.

A.1. Mass balance equation for the water phase

Substituting the approximate solution and the capillary pressure into the mass balance equation
of the water phase the following residual is obtained:

L1(p̂w; Ŝw)=
@(��wŜw)

@t
− ∇ · [�w�wk(∇p̂w − �wg)]− qw (A2)

Prescribing the orthogonally between the residual and the basis functions yields the Galerkin
integral:

∫
�
L1(p̂w; Ŝw)Wj(x)=0; j=1; : : : ; N (A3)

We assume that the coordinate directions are parallel to the principal directions of hydraulic
anisotropy, so that the o�-diagonal components of the conductivity tensor k are zero:

k=

⎡
⎢⎢⎣
kx 0 0

0 ky 0

0 0 kz

⎤
⎥⎥⎦

Expanding Equation (A3) and using Green’s lemma for the spatial derivative term lead to:

∫
�

@(��wŜw)
@t

Wj d� +
∫
�
[�w�wk (∇p̂w − �wg)] · ∇Wj d�

−
∫
�
[�w�wk(∇p̂w − �wg)] · nWj d�−

∫
�
qwWj d�=0; j=1; : : : ; N

A.2. Mass balance equation for the non-wetting phase

Following a similar procedure for the non-wetting mass balance equation yields the expression:

∫
�

@(��n(1− Ŝw))
@t

Wj d� +
∫
�
[�n�nk(∇p̂w +∇p̂c − �ng)] · ∇Wj d�

−
∫
�
[�n�nk(∇p̂w +∇p̂c − �ng)] · nWj d�−

∫
�
qnWj d�=0; j=1; : : : ; N
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A.3. Sti�ness and mass matrix coe�cients

Substituting Equation (A1) and making use of boundary conditions to replace the above
boundary integral terms lead to the following system of ordinary di�erential equations:

H (x)x+M (x)ẋ+ q(x)=0 (A4)

with matrices H and M given by

H =

[
Hw 0

Hn 0

]
; M =

[
0 Mw

0 Mn

]

while vectors x, ẋ, and q read:

x=

[
pw

Sw

]
; ẋ=

[
ṗw

Ṡw

]
; q=

[
qw

qn

]

where the coe�cients have the following expressions:

hw; ij =
E∑

e=1

∫
V e

�e
w�

e
wk

e∇We
i · ∇We

j dV; hn; ij=
E∑

e=1

∫
V e

�e
n�

e
nk

e∇We
i · ∇We

j dV

mw; ij =
E∑

e=1

∫
V e

�e�e
wW

e
i W e

j dV; mn; ij=
E∑

e=1

∫
V e

�e�e
nW

e
i W e

j dV

qw; i =−
E∑

e=1

[∫
V e

g(�e
w)
2�e
wk

e
z
@W e

i

@z
dV +

∫
V e

qe
wW

e
i dV

e +
∫
�e
2

q∗
wW

e
i d�

]

qn; i =
E∑

e=1

[ (∫
V e

�e
n�

e
nk

e∇We
i · ∇We

j dV
)
p̂c; j

−
∫

V e
g(�e

n)
2�e
nk

e
z
@W e

i

@z
dV −

∫
V e

qe
nW

e
i dV −

∫
�e
2

q∗
nW

e
i d�

]

In the above equations, Hw = {hw; ij}, Hn = {hn; ij}, Mw = {mw; ij}, and Mn = {mn; ij} represent
water and non-wetting sti�ness and mass matrices, respectively; qw = {qw; i} and qn = {qn; i}
incorporate gravity terms, source=sinks terms, and Neumann boundary conditions. Vectors x
and ẋ contain the unknown nodal water pressure and saturation values, and the corresponding
time derivatives. Mass matrices Mw and Mn are lumped for stability reasons, while in the
sti�ness matrices Hw and Hn the hydraulic mobility can be evaluated ‘fully upwind’, with the
�uid potential of each phase � de�ned as

 �=p� − ��gz; �=w; n
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and the upwind mobility along each side connecting two nodal points evaluated as

��; ij = ��; i;  �; j −  �; i6 0

��; ij = ��; j;  �; j −  �; i ¿ 0

This choice introduces a small amount of numerical di�usion which guarantees a monotonic
behaviour of the numerical solution and avoids undesirable numerical oscillations.
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